Date: June 30, 2015

Practice Midterm

Show all of your work, label your answers clearly, and do not use a calculator.

Problem 1 When the ellipse given by $x^2/3^2+y^2/2^2=1$ is revolved around the horizontal axis we obtain an "ellipsoid of revolution." Find the volume of the enclosed solid. See the below figure, where a=3 and b=2.

$$\frac{x^2}{3^2} + \frac{y^2}{2^2} = 1$$

$$\Rightarrow y = 1 - \frac{x^2}{9}$$

$$\Rightarrow y = 2 \cdot 1 - \frac{x}{9}$$
FIGURE 11

$$V = \int_{-3}^{3} A(x) dx$$

$$A(x) = \pi r^2 = \pi \left(2 \int 1 - \frac{x^2}{9}\right)^2$$

= $4\pi \left(1 - \frac{x^2}{9}\right)$

$$\Rightarrow V = \int_{-3}^{3} 4\pi \left(1 - \frac{x^{2}}{9}\right) Jx = 4\pi \left[x - \frac{x^{3}}{27}\right]_{-3}^{3}$$

$$= 4\pi \left(3 - 1 - \left(-3 + 1\right)\right)$$

$$= 4\pi \left(6 - 2\right)$$

$$= 16\pi$$

Problem 2 Find the volume of the torus (see the figure, where a=5 and b=3) obtained by rotating the circle $(x-5)^2+y^2=3^2$ around the vertical axis. Note that in the picture, the vertical axis is the y-axis.

length b

FIGURE 12

See class motes from today (7/6/15).

Problem 3 Find the length of the curve given by $x = \frac{y^3}{3} + \frac{1}{4y}$ from y = 1 to y = 6.

See Webwork Solutions for 6.3.2

Problem 4 Find the area of the surface generated by revolving the curve $x = \frac{e^y + e^{-y}}{2}$ from $0 \le y \le \ln(2)$ about the y-axis.

See Webwah Solutions 6.4.4

Problem 5 Solve the differential equation given by

$$\frac{dy}{dt} = \frac{5t}{3t(t-1)ye^y}$$

$$= 7 \int ye^{y} dy = \int \frac{5}{3} \underbrace{1}_{(t-1)} dt$$

$$\Rightarrow ye^{y} - \int (1)e^{y} dy = \frac{5}{3} \int \frac{1}{t-1} dt$$

So you cont actually solve for y in this case, but expect to on the text.

Problem 6	A bathroom scale is compressed 1/12 in when a 150-lb person stands on it.
Assuming that	the scale behaves like a spring that obeys Hooke's Law, answer the following:

a What is the scale's force constant? (Remember the appropriate units!)

See Webwah Solutions

b How much does someone who compresses the scale 1/8 in weigh? (Units!)

 $c \;\; \textit{How much work is done compressing the scale 1/8 in? (Units!)}$

Problem 7 Evaluate the integral

$$\int_{x \log(x)dx} \int_{y = x^{2}} |\log(x)| dx = \int_{x}^{x \log(x)} |\log(x)| - \int_{x}^{x \log(x)} |\log(x)| dx$$

$$= \int_{x}^{x \log(x)dx} |\log(x)| - \int_{x}^{x \log(x)} |\log(x)| dx$$

$$= \int_{x}^{x \log(x)dx} |\log(x)| - \int_{x}^{x \log(x)} |\log(x)| dx$$

$$= \int_{x}^{x \log(x)dx} |\log(x)| - \int_{x}^{x \log(x)} |\log(x)| dx$$

Problem 8 Evaluate the integral
$$\int 6e^{-y}\cos(y)dy = \frac{1}{2}\left(\frac{e^{-y}|\sin(y) - \cos(y)|}{e^{-y}|\cos(y)|} - \frac{1}{2}\left(\frac{e^{-y}|\sin(y)| - \cos(y)|}{e^{-y}|\cos(y)|} - \frac{1}{2}\left(\frac{e^{-y}|\sin(y)| - \cos(y)|}{e^{-y}|\cos(y)|} - \frac{1}{2}\left(\frac{e^{-y}|\cos(y)|}{e^{-y}|\cos(y)|} - \frac{1}{2}\left(\frac{e^{-y}|\cos(y)|}{e^{-y}|\cos(y)|}\right)\right)$$

$$= -\frac{1}{2}\left(\frac{e^{-y}|\cos(y)|}{e^{-y}|\cos(y)|} - \frac{1}{2}\left(\frac{e^{-y}|\cos(y)|}{e^{-y}|\cos(y)|} - \frac{1}{2}\left(\frac{e^{-y}|\cos(y)|}{e^{-y}|\cos(y)|}\right)\right)$$

$$= -\frac{1}{2}\left(\frac{1}{2}\left(\frac{e^{-y}|\cos(y)|}{e^{-y}|\cos(y)|} - \frac{1}{2}\left(\frac{e^{-y}|\cos(y)|}{e^{-y}|\cos(y)|} + \frac{1}{2}\left(\frac{e^{-y}|\cos(y)|}{e^{-y}|} + \frac{1}{2}\left(\frac{e^{-$$

Problem 9 Solve the differential equation

 $\int \sec^3(x)dx$

Jee dan notes

Problem 10 Evaluate the integral

 $\int \cos^2(x) \sin^{(x)} dx$

a = cos(x)

du = - Sin/x/dx

=> $\int cos^2(x) sin(x) dx = \int u du = \frac{u^2}{2} + c = \frac{cos^2(x)}{2} + c$

Original problem was meant to be

S cos(x) sln2(x) dx = (1+cos(2x)) (1-cos(2x))

= 4/1-cos(2x) dx = 4/sin(2x)dx = 4/1-cos(4x) dx

Problem 11 Evaluate the integral $\int \frac{1}{\sqrt{9+x^2}} dx$ Ou trig rub X = 3 fan (0) dx= 35e2(A)da => [] (] Sec (6) do - [Sec 2 do] do - [Sec 2 do] do = Secodo = In (seco + tamo 1) + C Problem 12 Evaluate the integra (Sedo)tano) 26 On partial fractions untoach

Problem 13 Evaluate the integral

$$\int \frac{4x+5}{(x+2)^2} dx$$

Partial fractions:
$$\frac{4x+5}{(x+2)^2} = \frac{A}{x+2} + \frac{B}{(x+2)^2}$$

Problem 14 Evaluate the integral

Problem 15 If the integral

$$\int_{1}^{\infty} \frac{\cos^2(x)}{x^2} dx$$

converges, give proof by comparison. If it diverges, then prove that by comparison.

- (= cos(x) = 1

 $\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{\alpha \to \infty} \left[\frac{1}{x} \right]_{1}^{\alpha} = \lim_{\alpha \to \infty} \left[\frac{1}{x} \right]_{1}^{\alpha}$

Problem 16 If the integral

$$\int_{1}^{\infty} \frac{1}{1+x^2} dx$$

 $\int_{1}^{\infty} \frac{1}{1+x^2} dx$ So both Converge converges, prove it using any method you wish. If it diverges, then prove that it diverges.

· Same as above,